BLMs and Sector Tests

B. Dehning

Location of Detectors (I)

- 1. Distinguish between beams
- 2. Observe losses due to magnet misalignments
- 3. Observe losses due to orbit changes and emittance growth

Monitors at IP8

		04/04/2005				IP 8			
IP8 left					IP8 right				
	N	Location	IC	SEM		N.	Location	IC	SEM
		Location		02					
						1		1	1
	1	BPMSW.1L8	1	1		2		6	L
	2	MQXA.1L8	6			2	MOYB A2R8	6	
	3	MQXB.A2L8	6			1		6	
	4	MQXA.3L8	6			5		3	3
	5	TCTV.4L8.B1	1	1		6	TCT\/ AR8 R2	1	1
	6	TCLIA.4L8.B2	1	1		7		2	2
	7	TCTH.4L8.B1	1	1		2 2		1	1
	8	MBRC.4L8	1	1		0	MBPC 4P8	1	1
	9	MQY.A4L8	6			10		6	
	10	MQM.A5L8	6			11		6	
	11	TCLIB.6L8.B2	1	1		12		2	2
	12	MQML.6L8	6			12		2	3
	13	MQM.A7L8	6			14		6	3
	14	MBA.8L8	6			14		6	
		MBA.8L8		6		16		6	
	15	MQML.8L8	6			10		0	6
	16	MQM.9L8	6			17		6	U
	17	MQML.10L8	6			10		6	
	18	MBA.11L8	6			10		6	
		MBA.11L8		6		20		6	
	19	MQ.11L8	6	_		20	MRA 11D9	U	6
						21		6	U
						21		0	
						22	MQ.12R8	6	
	20	MQ.12L8	6			23	MQ 13R8	6	
	21	MQ.13L8	6			24	MO 14R8	6	
	22	MQ.14L8	6			24	MO 15R8	6	
	23	MQ.15L8	6			23		0	

Loss Levels and Required Accuracy

Relative loss levels						
	450 GeV	7 TeV				
Damage to components	320/5	1000/25				
Quench level	1	1				
Beam dump threshold for quench prevention	0.3	0.3/0.4				
Warning	0.1	0.1/0.25				

Specification:

Absolute precision (calibration)	< factor 2 initial < factor 5)
Relative precision for quench prevention	< 25%

- Lab calibration of electronics
- Test of ionisation chamber before installation (source)
- Electrical test of installed system

Systematic Uncertainties at Quench Levels

	relative accuracies	Correction means
Electronics	< 10 %	Electronic calibration
Detector	< 10 – 20 %	source/sim./measurements
Radiation - SEE	about 1 %	
fluence per proton	< 10 - 30 %	sim. / measurements with beam (sector test)
Quench levels (sim.)	< 200 %	measurements with beam (sector test) / scaling
Topology of losses (sim.)	< large	sim. / measurements

Proton Loss in Dispersion Suppressor

Apertures at both sides of a arc quadrupole magnet

Expected Sector Test Results

 Quench levels : Instant loss duration test => secondary particle heat deposition and heat capacity of Cu is tested at 450 GeV, partial test

Requirements and Procedure

- Several BLMs along the croystat
- Directing the beam towards the beam screen with corrector magnet
- Recording of injected beam intensity
- Estimate of impact position by using fluence simulation.
- Variation of impact position (corrector magnet)
- Outcome:
 - check of fluence simulation (radiation check)
 - Quench levels, errors ?
- To come to an "usefull" Quench level estimate about 10 quenches are needed (beam time?)

Secondary Particle Distribution at Detectors

- Topology simulation tests
- Fluence test

Disentangling of effects is needed

 Dense sampling of longitudinal secondary shower distribution (installation of several BLM)

Quench and Damage Levels

Detection of shower particles outside the cryostat or near the collimators to determine the coil temperature increase due to particle losses

Proton Loss in Arc

Quadrupoles

Fluence Error

Relative error < 30 % (systematic)