Injection test in 2006

- The installation schedule version 1.7 recently approved includes a 'possible injection test' - foreseen in April 2006
- Injection of beam down TI8, into LHC at the injection point right of point 8, though IP8 (LHCb) through sector 8-7 to a temporary beam dump located after the Q6 quadrupole just right of the warm insertion of point 7
- Many good arguments for performing this test (as outlined at Chamonix 2003 session 7)
- Also numerous consequences (some of which were presented at Chamonix 2003 session 4)

Motivation

- Powerful diagnostic tool
 - Mechanical aperture checks
 - Field quality checks
 - Test diagnostic systems
 - Test controls, correction circuits, BPMs etc.
 - First hardware exposure to beam, quench limits...
- Major challenge/opportunity to bring everything together: fullblown systems tests, highlight oversights, debug.
 - Magnets, power converters, controls, timing, beam transfer etc.
- Provide a very important milestone for beam-based instrumentation, diagnostics and control
- Public relations

Strongly endorsed at Chamonix 2003

Downside

- On-going installation of 3-4, 5-6, 6-7
- Hardware commissioning 4-5
- Will clearly pull in resources from the above
 - Preparation for the test
 - Test itself
- Force the installation schedule of some systems
 - e.g. access and interlocks
- Interrupt the installation and commissioning schedule of LHCb
- Potentially force 7-8 to be declared simple controlled radiation area with some knock-on effects

Test outline

Test	Duration [hours]	Intensity	Number of shots	Integrated Intensity	Comments	
Injection Steering, commission screens, IBMS, timing	12	5.00E+09	360	1.80E+12		
Trajectory acquistion commissioning, trajectory correction, threading	24	5.00E+09	288	1.44E+12		
Commission BLMs	24	5.00E+09	720	3.60E+12		
Linear Optics from kick/trajectory, coupling, BPM Polarity checks	24	1.00E+10	288	2.88E+12		
Dispersion, energy offset	3	5.00E+09	100	5.00E+11		
Energy offset versus time on FB	12	5.00E+09	100	5.00E+11	Cycle & repeat	
Aperture limits, acceptance	12	5.00E+09	360	1.80E+12	Pi bumps, BLMs, BCT	
Momentum aperture	6	5.00E+09	60	3.00E+11	Move energy of SPS beam	
IR bumps, aperture	6	5.00E+09	60	3.00E+11	Careful in LHCb	
Study field errors	12	1.00E+10	72	7.20E+11	Collect data, off-line analysis	
Effects of magnetic cycle, variations during decay, reproducibility	24	5.00E+09	360	1.80E+12	12 cycles	
Multi-bunch injection - determination of quench level	12	3.6E+11	72	2.59E+13	1 batch (72 bunches)	
Effects of thermal cycling						
TOTAL	171		2840	4.16E+13		
DAYS	DAYS 7.1		Coupled with properties time and high			
Injection test		COL	Coupled with preparation time and high operational inefficiencies			

Classification of Radiation Areas

- Areas with dose rates below an average of 2.5 µSv/h are called surveyed areas. There is no restriction on access to such areas.
- Simple controlled areas have average dose rates of up to 25 µSv/h.
 - They are marked by warning signs and are generally enclosed in physical boundaries.
 - Persons working in such controlled areas must wear their film badge all the time.

Even at extremities of proposed beam intensity envelop (several nominal bunches) – "not disastrous"

- In any case one should anticipate that the areas that have seen beam to be declared a "simple controlled area"
- Life would be a lot simpler if we remain below 2.5 μ Sv/h
- NB LHCb expects minimal losses, and will need to be classified only as "surveyed" after the test

Studies and discussions ongoing

Point 8

Detuned insertions

Smaller beam size

Low emittance pilots injected

Access

Injection test in 2006?

To obtain project-wide approval we need to;

Detail the test itself and elaborate requirements:

- Critically evaluate the arguments used to justify injecting beam into sector 8-7 of the LHC.
- Establish the required duration for the test and find the optimum time-slot taking into account the availability of injectors and its potential impact on the installation schedule.
- Elucidate requirements of, and the consequences for, the injector chains.
- Fully define the foreseen beam parameters and, in particular, estimate the integrated beam intensity involved.

and ...

Injection test in 2006?

We need to elaborate and detail the consequences of the test:

- Injectors :
 - Elucidate requirements of, and the consequences for, the injector chains.
- Radiation after the event
 - Quantify the expected activation levels resulting from the test and potential knock-on effects due to remnant radiation, e.g. access, traceability.
- Consequences of installation and commissioning of other sectors
 - before, during and after the test. Preparation time for test.
- Consequences of installation and commissioning LHCb
 - Identify the consequences for installation and commissioning of before, during and after the test.
- Access
 - Evaluate the requirements, the cost of implementation and potential impact for the access system. Evaluate possible shortcuts.
- Interlock system
 - Evaluate the requirements, the cost of implementation and potential impact
- Evaluate required resources. What can go wrong?

Injection test in 2006

If go ahead is given:

- Fully define the beam parameters, the studies to be performed, and draw up detailed planning for the test itself.
- Fully define the required configuration for the sector.
- Fully define requirements of machine protection and interlock systems. Liaise with those responsible to ensure that installation and test schedule will meet requirements.
- Fully define requirements for controls, instrumentation, and beam-related equipment. Liaise with those responsible to ensure that installation and commissioning schedule will meet requirements.
- Fully define the access requirements of the test. Liaise with groups involved to ensure requirements established above are met. Define the access conditions after the test.
- Define the radiation monitoring needed during and after the test. Establish how to deal with any implications of remnant radiation (access, traceability).
- Liaise with hardware commissioning team and establish responsibilities during overlap.
- Establish detailed consequences for installation and commissioning of other sectors of the machine, before, during and after the test.
- Establish detailed consequences for installation and commissioning of LHCb before, during and after the test.
- Establish a detailed planning from now to the test
- Ensure that the necessary formalities required by INB are in place

Plan

